Asymptotic expansions for Taylor coefficients of the composition of two functions
نویسنده
چکیده
We give an asymptotic expansion for the Taylor coefficients of L(P (z)) where L(z) is analytic in the open unit disc whose Taylor coefficients vary ‘smoothly’ and P (z) is a probability generating function. We show how this result applies to a variety of problems, amongst them obtaining the asymptotics of Bernoulli transforms and weighted renewal sequences.
منابع مشابه
Modelling, Analysis and Simulation Modelling, Analysis and Simulation Multi-point Taylor expansions of analytic functions
Taylor expansions of analytic functions are considered with respect to several points, allowing confluence of any of them. Cauchy-type formulas are given for coefficients and remainders in the expansions, and the regions of convergence are indicated. It is explained how these expansions can be used in deriving uniform asymptotic expansions of integrals. The method is also used for obtaining Lau...
متن کاملTwo-point Taylor Expansions of Analytic Functions
In deriving uniform asymptotic expansions of a certain class of integrals one encounters the problem of expanding a function, that is analytic in some domain Ω of the complex plane, in two points. The first mention of the use of such expansions in asymptotics is given in [1], where Airy-type expansions are derived for integrals having two nearby (or coalescing) saddle points. This reference doe...
متن کاملMulti-point Taylor Expansions of Analytic Functions
Abstract. Taylor expansions of analytic functions are considered with respect to several points, allowing confluence of any of them. Cauchy-type formulas are given for coefficients and remainders in the expansions, and the regions of convergence are indicated. It is explained how these expansions can be used in deriving uniform asymptotic expansions of integrals. The method is also used for obt...
متن کاملTaylor Coefficients of Mock-jacobi Forms and Moments of Partition Statistics
We develop a new technique for deriving asymptotic series expansions for moments of combinatorial generating functions that uses the transformation theory of Jacobi forms and “mock” Jacobi forms, as well as the Hardy-Ramanujan Circle Method. The approach builds on a suggestion of Zagier, who observed that the moments of a combinatorial statistic can be simultaneously encoded as the Taylor coeff...
متن کاملIdentification of Initial Taylor-Maclaurin Coefficients for Generalized Subclasses of Bi-Univalent Functions
In the present work, the author determines some coefficient bounds for functions in a new class of analytic and bi-univalent functions, which are introduced by using of polylogarithmic functions. The presented results in this paper one the generalization of the recent works of Srivastava et al. [26], Frasin and Aouf [13] and Siregar and Darus [25].
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Asymptotic Analysis
دوره 63 شماره
صفحات -
تاریخ انتشار 2009